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The non-linear character of the problem steins from the 

fact that the structure of the moving system changes with timei 

as the anchor chain is unwound from the windlass, the links change 

from rotary to rectilinear motion. Similar changes of the struc- 

ture of a moving one-dimensional continuum occur in a wide variety 

of problems concerned with the behavior of plastic-rigid beams 

and frames under dynamic loading. The mathematical techniques 

developed in -.:-. • present paper heve, in fact, proved valuable in 

the treatment of 5"cb -.r.iblems.  It is for this reason that the 

present paper is issued as a technical report under Contract N7onr- 

35^01 even though the subject matter of this paper does not fall 

within thn  scone of this contract. 

li 
75. H. LEE, Chairman 
Graduate Division of 
Applied Mathematics 
Brown University 

i 
>• i 

Ifc 

—<-i < ^^ '• •>.<.. .»•'• '±%ae&±&&2i& 



 • 
*•*» 

All-91 

ON THT. MOTION OF ANCHOR CHAINS 

By R. Gran Olsson, Providence, R. I, 

!•  Introduction,  In an earlier paper the problem of the motion 

of an anchor chain was treated under some idealizing conditions 

sue'1, as, for instance, neglecting the friction of the anchor 

chain, chain holder and windlass and the moment of inertia of the 

windlass with respect to the rotating axis [l ] . The anchor 

chain, however, also moves on inclined planes with different 

angles and fric.ion occurs at each point where the chain is 

changing its directLon.  It may be shown that it is possible to 

take all these influences into account without making use of 

mathematical tools other than those in the paper cited above.  In 

other words:  it is possible by means of simple substitutions to 

consider the motion of anchor chains under more real physical 

conditions and to get solutions similar to those obtained earlier. 

The results may he interpreted in the same way as before. 

5ciore  giving the mathematical treatment of the prob- 

lem let us consider the different parts of the anchor mechanism 

and the conditions whic1, this mechanism must satisfy in order to 

be in agreement with the solution jiven in this paper. The linhs 

of the chain are moving from the chair, locker, through the chain 

locker pipe, over the chain holder of the windlass and through 

the hawse pipe (Fig. 1)[ 2 ],  The chains should hp.vc a clear lead 

to the hawse pipe. The chain holder particularly and the windlass 

generally should be kept veil lubricated in order to keep the 

friction moment small. The position of the chain locksr is very 

—-—•"— L3B1 
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important if the windlass gear is to work in a satisfactory 

manner.  In(Fi[i. 2)is shown the amount of grip of the chain Dy 

the chain holder:  to insure this grip it is essential to have 

the tall end weight of the chain from tho windlass down to the 

chain locker well below.  It is also important for the locker to 

be below the m^in deck, with a chcln locker pipe (Fig. 1) for 

controlling the lashing cable when the chain is dropped. On 

merchant marine ships anchor chains are made up in 90 foot lengths, 

usually coupled together by a bolt type of shackle necessitating 

extreme-end linl-s of special size on either side of the shackle, 

Tho design of the windlass cable holder must accommodate the 

pitch of common links as well as the different pitches over the 

shackle connections as shown in (Fig. 2). 

The transition from tho main deck to the hawse pipe 

as shown in (Fig. 3) is to eliminate th«> wear at the hawse pipe* 

to reduce the frictional force, which has the effec': of decreasing 

the effective force in tho chain between the ship and the anchor, 

tho hawse pipe should bo given such a shape as to provide a 

smooth and continuous race for tho chain links. 

2. Notations.  In this paper the sane notations as those of 

Timoshenko and Yqun£ will bo used [3 ]• some more mathematical 

notations are in agreement with those used in textbooks on el- 

liptic intesr; Is ;jnd functions [*+ ]. 

a = acceleration (en sec "), 

C0 = constant of integration 

Ii 

j 
l 
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e^, e^i o^ ts root3 of the equation k-sD  - g?3 - g. 

F » force of friction (g), 

g = acceleration of gravity (cm sec ), 

gp, g^ e invariants of the Woicrstrass elliptic function 

I = moment of inertia of windlass (g cm sec ), 

k = modulus of the Jacobian elliptic function, 

J} = length of a section of the chain (cm), 

-1   2 
m = mass of the system in motion (g cm  sec ) 

m re(, = J/r = mass of the windlass reduced to the periphery of 

—1   2 
the v.-indlass (g cm" sec ), 

.-!• q = weight per unit length of the chain (g cm ), 

r = average value of the windlass radius (cm), 

S±  = tension in the choin for an arbitrary section (g), 

t = time (sec), 

u = parameter of the elliptic function , 

v = velocity (ci.< sec*1), 

V - weight of the anchor (;,) 

V = W0 + gx = weight of the anchor and a length x of the chain (g), 

x = displacement, length of the chain from a fixed point (cm) 

xQ = WQ/S = length of the chain, corresponding to the weight WQ(cm), 

cx^ = angle of an arbitrrry inclined plane 

Y = ratio of retarding and accelerating forcos 

A = discriminant of Woierstrass elliptic function, 

6= incriment of a quantity (5>x, bq), 

e = angular acceleration of the windlass (sec  ), 

\i = coefficient of friction, 

t, = (V/Q + gx + g£ l±  + g Km red 5/Wo' 

I' ! 

' 
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9  = angle of rotation of the windlass, 

u» = the real half period of the elliptic p-functlon 

p(u) = the elliptic p-function of I'eicrstrass, 

C(u) s the elliptic C- function of Weiorstras3. 

3. Equation of motion and its integration. By using d'Alsmbcrts 

principle and the principle of virtual displacements we get as 

equation of motion of the system by an increment 6x of displace- 

ment x and 6<p of angle 9 of rotation [5 ] . 

n 
(W0 + gx + g £  J, sin aj ) 6x - F6x - (I9 + M«) 69 o        1=1 1     1 

-iAr [(Wo + ** + *?V v] 6x = 0. (1) 
g dT 

As will be shovn at the end of this paper it is not necessary to 

make a nore exact consideration of the friction than notating it 

by a constant force F. 

Because of the fixed connection of anchor chair and 

windlass the '-.inematic condition yields 

6x = r6<p 

and for the velocities and accelerations 

,       .  • •       •• 
x = v r-.  r? , x = a = r9 

respectively. 

The  teriii  19 69 r.iay br written 

I \.   toe = m     , dv  bx, rod dt       » 

(2) 

(2a) 

(3) 
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p 
where mred = I/r is the moment of inortia reduced to the radius 

r of the windlass. This is added to tho last terra of Eq.(l). 

In order to obtain a total differential the expression 

STX±  (1 - sin aA) 4 gm red 

is added to the two first  terms of Eq.(l),   giving the following 

equation 

WQ 4 qx 4 qv^1 + grarGd  - [F  + -X 4 q7lt  (1  - sin a±)  4 gn^] 

A J^ [(V,o  4 qx + qU1  +  gmrod)  v ]. (la) 

i uitiplying  by 

(V.'o 4. qx + qZl± + gmrcd)  vdt 

and  integrating,  v/c obtain 

j-    (WQ 4 qx + q^  + jjmrod)3  - ^ [F 4 4 +  q^   (1  - sin a± 

r 
+ grared  ]   (Wo + 1x + 4**1 + Sffl

r0d  ]    + ?f ?B 

2 0 
= v       (W0  + qx + qZt   4  gmred)% (lb) 

where   tho  Integration conjU.nt may be determined fron the con- 

dition ?     v  =  0 when x  - 0,   i.e. 

C0  •=     (V'Q  4 qTj^  4  -nrcd)3  4 [ F  4 !k + q^   (1  -  sin  c^) 

+ gm red ]  (W *Tll 
+ smred) 

jrr&^r* 
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It is convenient to introduce the following abbreviations 

(W0 + qx + qSti + 6114,^)^ «* 5,     (*f) 

(W0 • qEJ^ + gm^)/^ = *0, (>fa) 

[F + -2 + q2^(l - sin a±)  + gmred ]/WQ = Y.       (W 

The velocity may now be written as 

= Ho g j*2 «3 .. ^3) + Y 
13 

u0 - r> ,LA2. (lc) 

With the notation 

W0/g = xQ, i.e. djc « dJ;, 
XQ 

we obtain after some simple calculations the time 

t = ^|T§" f r_-,... __5±< —.,      ,       (5)- 

when it is assumed that £= £0(:> = 0) for t = C. 

"Iquation (1) is now integrated, but It is more con- 

venient to introduce a ne" independent variable, let us say u, 

and present the kinematic quantities (displacement, velocity, 

acceleration) r.nri also the ti-ne as dependent on this new variable 

u. 

h.     Introduction of a new independent variable. FromEq.(lb) the 

time t may always bo expressed by the integral 

*•/! f-Af (6) 
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where x = xQ correspond to t = 0. In the second Integral we 

hove introduced C instead of x. 

Instead of expressing the time as a function of the dis- 
placement let us introduce a new independent variable 

the inverse function being 

C = pCu). 

From Eq.(6) we have 

df*f 

*&& 

and from Eq.(7) 

du = <£ = dt = dt ti    c    van 

Consequently we find, by integrating, 

t = 
u 

u, 
p(u)du. 

The velocity is according to Eqs.(?a) and (8) 

c= c1 & = KW. * du  p(u) 

The acceleration expressed by p(u) is 

(7) 

(8) 

(6a) 

(7a) 

(9) 

(10) 

dt vpfu)    du pTuT 
2 du = P(U)P"(U) - p'(u)' 

dt p(u) 

As C is given as a function F(£) = F [p(u)3 we get the following 

differential equation for p(u)i 

•r T 



zLL*l [ £^4 - filiai ] c F [P(u)3 P(u). p(u)   p'(u)  p(u)      L   J 

This equation may serve as a check at the end of the calculation. 

In our case v/e have to substitute 

u = 
<x> 

^«3-$>+6r«
?-<0

5>}l/S    (7b' 

which is an elliptic integral, and the inverse function 

5 = P(u) (8a) 

is an elliptic function of u. 

Py means of the substitution 

S= (s + t), d£ = <js, 
2 

we transform the integral (7b) into 

ao UCJ ds 

\1 *+s3 - g2s - S3 

(12) 

(7c) 

where the invariants of the elliptic Integral 

:2 = 3if, 23 - H0
2(*o " J Y) + Y3 (13) 

and the inverse function 

s = p(u) (8b) 

is the Welerstrass p-fnnction if we choose the indicated limits 

of integration in (7b) and (7c). 

From Eq.(5) we obtain the time 
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6x„ 1/2 ns       (« + $)ds 

s0\|i+s^ - g2s - g^ 3 

the integral expressing the tine 

sds 

\P+s3 - g~s - g,  I 

u 

u. 
p(u)du C(u0) - t(u) 

whern C(u) is the l/eierstr.-.ss t-function. 

T^or the tine we finally get 

t = (£*o)1/2 [ C(u0) - C(u) + | (u - un) ]. 

From SPS.C^), (12) and (8b) we have 

x = x0[(p(u) + $)-!]- (Ut  +jmred) 
g 

and the velocity frou "qs. (lc), (8b) and (12) 

x -\ X°" x =\j-T- P'(uL. 
p(u)+* 

(5a) 

(5b) 

(5c) 

(8c) 

(10a) 

The accelerrtion can be calculated from Eq.(la), which may be 

•..Tit ten 

Wo ^ - Y) = ; W0|- «v). (11a) 

jl 
n 
i 

lii- 
--* • 

: 
; 

! 
j 

i 

i 
i 

Recognizing that 

dr (V-oO v = q v2, d"t 

we obtain from ?,q,   (11a) 
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(lib) 

By means of Eq.(8b) and (12) we get 

dv 
TB  P(, 

a e dv « -S  [ p(u) - 1 Y - J  P'^u?2 J. 
u) + J       2    6 (p(u) • £)* 

(lie) 

There is an asymptotic value of acceleration equal to g/3. This 

constant value of acceleration corresponds to a straight line for 

velocity and a parabolic curve for displacement. 

By specializing the results obtained above to the 

case Y = 0 we get the same expressions as in the earlier paper. 

Therefore we don't need consider this special case now. 

5. Investigation of .the dij3.c.rimijiajrrt of the Weierstrapss_ p- 

functlon. From a numerical calculating point of view it is im- 

portant to consider the discrimant of the Vcierstrass p-function, 

i.e. [ 6] 

A = g2
3 - 27g3

2, (1*0 

where g2, g-j are t'ic invariants, introduced in 3q.(7c).  Insert- 

ing gp and g~ from ^q.(13) in (1*+) we obtain after some elemen- 

tary calculations 

" " 2l6 V^o - § Y)(^3 + 2   ^3 - 3Y ^o2)» (lWa) 

where ^ and Y are given by (*+a) and C'fb). From Eq.(la), however, 

we see that motion is Possible only if K0 > Y and from (*+a) and 

(hb)  that Z,Q  > 0, Y_>0, where Y = 0 corresponds to the case in- 

vestigated earlier. Writing the discriminant 
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A = ^32  %ob$£ -1)<£ -l)2(^L + i). 

The value of the discrin>ant for Y 3 0 is 

— 1  

11 

(l'fb) 

*o " - »*2 C0°. (lWc) 

In order to obtain a convenient representation of the discriminant 

A we write 

AAO = - (U.ija. D
2
( Y +1). (l>+d) 

This expression considered as a function of Y/£0 has a maximum 

for Y/C0 = ( \fl^ - l)A = 0.781 and is equal to zero for 

Y/C = 2/3 and Y/C =1. The curve A/AQ is shown in Fig, 5. 

If v/e write the polynomial under the square root of 

Eq.(7c) 

ifs^ - r;2s - g^ = if(s - e^Cs - e2)(s - e3)f     (1?) 

eT> ep» e-a beino the roots of the equation 

kz^  - g2s - g3 = 0 (15a) 

the negative value cf the discrimantA means that two of the roots, 

let us say, e, and e, are complex, the third root e bein^ real. 

2 Introducing the quantities H and k defined by 

H2 = (e2-ei)(e2.e3) = 2e2
2 * £. 

k2 « 1 . 362 2 W 
^> 

(16) 

' i 

I    M 
\h\ 

i . 1 
} 

i 
/ 
1 
i 
I 1 4 

1 
! : * 
; " ^ 
. 
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where k is the modulus of the Jacobian elliptic functions, Eq3. 

(16) establish the connections between the quantities g^, ep, H 

and k , where g^ = 3T and e0 may be found as the real root of 

Eq.d^a). To get a survey over the numerical calculations it is, 

however, more convenient to consider the values H and'k as given 

end from these calculate g^ and e2, getting 

g3 

e2 = 1  H(l - 2k2), 

= (2-H)3(l - 2k2) [9 - 8(1 - 2k2)2] . 

S  (16a) 

The connection between the invariant g2 and g~, on the 

other hand, are given by 

g2 = -e2
2 - |2 = 3Y

2. 
e2 

(17) 

Introducing e2 and g, from *3qs.(l6a), we obtain 

g = if^C ^ (1 - 2k2) - 1] . (17a) 2      3 

Because of g2 = 3» » w© must have g2 > 0 or 

*t  (l - 2k2)2 - 1> 0, 
3 

p 
which neann k"£ 0.06699, -^ <  0.259, the sign equal corresponding 

to the equianharmonic case (g2 = 0) considered earlier.  Because 
2 

of g2 > 0 the value of 1: is small and therefore as a good ap- 

proximation we may assiime )<r  = 0, giving 

I! 

< 

§ 

M 
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e2   fe f H = ^g2  - Y, 

'3      3 "J       r' 

On the other hand we have from Eq.(13) 

(16b) 

(13a) 

and therefore the following condition between t,Q  and Y holds for 

the case k"" = 0: 

• 

*A0 = 2/3, 

all quantities being expressed by Y. 

As YA = 2/3 corresponds to the special case A = 0, 

where 

tfs3 - g2s - g3 = ifs3 - 3Y2s - Y3 = 0 

with all roots real e1  = Y, e2 = e, = - Y/2, we have the follow, 

ing equation for the Weierstrass p-funetion 

p(u) = e. +  LZ . 2. 
3    2.  sn (u )je1 -  e-j) 

(18) 

the real half period being 

Uh C-JL c 
/®i " e3 ^"^  ^J^®i 

(19) 

6.    Representation of the ''inematic quantities in the case 

YA0 = 2/3. 
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From Eq.(l8) we get,   Inserting for e^ and e, 

p(u)  * 1 =      ? . 
-      sin2(u\/£Y) 

The value of u corresponding to the argument V2 is u0 = 

and therefore wo may write 

f 
i/^r 

p(u) + * = 
2   ^2<!£> 

Introducing this in Eq.(Cc) we get, remembering from Eq.CVa) 

that 

Lli +*mred -^  «o -1)   -*o<j|r -1). 
(8d) 

- xn J   Y [- o 2 
sin4 :(u JJ7) 

- n 

From this ve see that the boundary condition x = 0 for t = 0 

(u = uQ) is satisfied. Equation (8d) may be written 

x = ^ Y x0 cot
2 (u \|Y). (8e) 

The time may bo written as 

t-(£i>1/2J*[pCu) +I] du (6x0)i/2 i  Y 
s   2 y 

n 
du 

sin (\|| Y'u) 

(5d) 

which, after integration, yields 

• 

jyr.AtJM'K-:; 
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t = - &)1/2 (JY)
1
/

2
 cot (JTYU). 

From this we obtain 

———% 2 
2 Y cot2(vJTVu) = j&- 
o 2 OX- <5f> 

which inserted in Eq.   (Oe)  yields the simple result 

x = %  t . (8f) 

• 

v. i 

.» 

From Eq.(lOa) for the velocity we get 

cot >J | Y u = x = -2s[*^ (|y)1/2 

A1'2 (iX-2)-V2t 

or, in agreement with (Of), 

x = § t. 
3 

In the same nrnnner v/e finally obtain for the acceleration 

Y . cos2(\|| Y u 

(10b) 

(10c) 

a = | S sin2(v|| Y u) - Y -Y 
) 

sin '(\Tf7u sin^( N]T7U ) 

a = | S Sin
2( N|2 Y U) [ I  Y - Y 1 ~ !?=  

3 Y -I. 
sin2( S4 Y'u) 

We ' therefore have for £Q = % y   the very simple case of constant 

acceleration, velocity linearly dependent on time and displace- 

ment depending on the square of time. If we are starting with an 

acceleration equal to g/3, the motion will continue with this con- 

stant value of acceleration.  In Fig. 6 is shown the displacement 
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as a function of time for the cases Y/£0 • 0, Y/$0  * 1/3 and 

YA0 « 2/3 (constant acceleration) j Fig. 7 and 8 present velocity 

resp. acceleration for the same values of Y/£ , 

7. Simple proof that constant acceleration is equal to g/,^. The 

equation of notion may be written 

dm v . _ dv 
dT v + m K 

where dm = qdx/g, dm/dt = qv/g, 

dm v = 3 v
2 

ItV  g  • 

At the beginning of motion we have v - 0 and 

(18) 

(19) 

H - S - •. P. ~ = »« - " M. dv 
t=0 "U,°3T ~ "o* 

(t=0) (t=0) 
(18a) 

Substracting this last equation from Eq.(l8) we get 

2 v + (m - nO a = P - P, 3 qx (18b) 
g " (t«0) 

because the difference of forces at an arbitrary time t and t = 0 

is qx. Furthermore is m - mQ = 2 x. By constant acceleration a 

the square of velocity is v = 2ax, which value inserted in Eq. 

(18b) yields 

- 2ax + a ax « qx or a = 
S     8 

. g 
5 const. 

This is the only value of constant acceleration which is valid 

for all values of x, that means during the whole motion from 

beginning to stop. From 3q.(l8b) we see that a constant acceler- 

ation i3 possible by motion uith variable mass if the mass in 

i 

: 

f 
I 

I 
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motion and acting forces are increasing proportional to the dis- 

placement. If the motion takes place under the influence of 

gravity the constant value of acceleration is just equal to g/3» 

8. Summary. The motion of an anchor chain under the influence 

of gravity and friction forces is considered. The equation of 

motion involves also the influence of the moment of inertia of 

the windlass and the frictional moment acting on the axis of the 

windlass. The solution of the equation can be expressed by the 

elliptic functions of Weierstrass, the time by the C- function 

of a parameter u, the 'cinematic quantities (displacement, velocity, 

acceleration) by the p-function and its derivative of the same 

parameter.  In a special case these functions can be expressed by 

trigonometric functions, corresponding to a constant acceleration 
2 

a = g/3» the velocity v = gt/3 and the displacement s = gt /6. 

The absence of frictional forces corresponds to the equianharmonic 

case of the Weierstrass function, tabulated by A. G. Greenhill 

[7 ]. All real cases of motion of the anchor chain are included 

between this case and the case of constant acceleration a = g/3 

and can bo found by linear interpolation with respect to the 

parameter Y, expressing the ratio of the friction forces and the 

acceleratinc forces. 

9« Appendix. As Mentioned in section 3 it is possible to give 

a more complete expression of the frictional force. This will 

be done in the following. Lot us consider the forces acting on 

an inclined plane (n - k) with the angle of the slope equal to 

a(    k^> thc lcngth ^fn-k) nnd thc friction coefficient^, which 

* 

! 

if 
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may be assumed equal for all Inclined planes (Fig.9). For the 

motion of this part of the chain we have the followinc equation 

sn-k - S^k + e*-n.k (sin Vk - |i cos o^) = j l^ gg, (20) 

At the corner of two adjacent slopes there exists the following 

relation between the forces in the chain on both sides of the 

corner 

S'  , = S . exp [n(a     - a , ) ] . 
n-k+i   n-k  r    n-k+1   n-k 

(21) 

The prime indc;: indicates the force in the chain just 

below the corner, the same notation without the prime index in- 

dicates the force on the same slope just above the corner.  If 

the first inclined plane where the chain is moving after leaving 

the windlass has the number (n - n), the force in the chain is 

Sn-m = aT(nredV)^^(^ + ^+Vdv 

(22) 

- q(*-0 sin aQ + *1 sin a^ + I    sin a2), 

J , -t,, £ arc the lengths of the chain of the throe first, soc- 
o'  1' 2 
tions, according to Fig. h.     On the other hand the force in the 

chain just below the last corner corresponding to the vertical 

plane (n + 1), is given by 

Sn+l = 
(Wo + <*x) -ioT C(Wo + ^v3. (23) 

Fron the lnst four equations wo can establish an equation of 
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motion similar to Sq.(la), section 3. It is convenient to in- 

troduce 

'-<W V ^  f (5 " V.» 

k»m 

+ vlo ^n-lc 8XP ^ " a<n-k^ 3J >(2»f) 

k=p 
L' = i£n *(n-k)(sln °n-k " •* cos °n-k) exp k(S " an-k)]' k*0 

If wc expand the equation (23) on both sides by (gmj,^ • qL), in 

order to have a total differential ve obtain the equation of 

motion 

(W0 + qx • gmred + qL) - 1 ^ [(WQ + qx + gmred + qL) v] 

= g»red 
+ -L - {£ ex» Ml '  an-m^ * <*L' j>«        C25) 

The tvo last terms contain the influence of the friction forces 

on the system.  If we now multiply the equation by 

(WQ + qx + gmred + qL) vdt = (wo + qx + S\ed  + qL) dx 

and integrate, we get the 3ame equation as Eq.(lb), section 3» 

apart a slight change of :iome of the constants. We thus have 

given a proof that it is allowed to introduce the friction as a 

constant, if we neglect the influence of centrifugal forces at 

the corners during motion. 
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